Atomic Snapshots of an RNA Packaging Motor Reveal Conformational Changes Linking ATP Hydrolysis to RNA Translocation

نویسندگان

  • Erika J. Mancini
  • Denis E. Kainov
  • Jonathan M. Grimes
  • Roman Tuma
  • Dennis H. Bamford
  • David I. Stuart
چکیده

Many viruses package their genome into preformed capsids using packaging motors powered by the hydrolysis of ATP. The hexameric ATPase P4 of dsRNA bacteriophage phi12, located at the vertices of the icosahedral capsid, is such a packaging motor. We have captured crystallographic structures of P4 for all the key points along the catalytic pathway, including apo, substrate analog bound, and product bound. Substrate and product binding have been observed as both binary complexes and ternary complexes with divalent cations. These structures reveal large movements of the putative RNA binding loop, which are coupled with nucleotide binding and hydrolysis, indicating how ATP hydrolysis drives RNA translocation through cooperative conformational changes. Two distinct conformations of bound nucleotide triphosphate suggest how hydrolysis is activated by RNA binding. This provides a model for chemomechanical coupling for a prototype of the large family of hexameric helicases and oligonucleotide translocating enzymes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RNA packaging motor: From structure to quantum mechanical modelling and sequential-stochastic mechanism

The bacteriophages of the Cystoviridae family package their single stranded RNA genomic precursors into empty capsid (procapsids) using a hexameric packaging ATPase motor (P4). This molecular motor shares sequence and structural similarity with RecA-like hexameric helicases. A concerted structural, mutational and kinetic analysis helped to define the mechanical reaction coordinate, i.e. the con...

متن کامل

Molecular mechanisms of substrate-controlled ring dynamics and substepping in a nucleic acid-dependent hexameric motor.

Ring-shaped hexameric helicases and translocases support essential DNA-, RNA-, and protein-dependent transactions in all cells and many viruses. How such systems coordinate ATPase activity between multiple subunits to power conformational changes that drive the engagement and movement of client substrates is a fundamental question. Using the Escherichia coli Rho transcription termination factor...

متن کامل

Modeling of Three - dimensional Structure of DNA - packaging RNA ( pRNA ) Monomer , Dimer , and Hexamer of Phi 29 DNA Packaging Motor *

A striking common feature in the maturation of all linear double-stranded DNA viruses is that their lengthy genome is translocated with remarkable velocity into the limited space within a preformed protein shell and packaged into near crystalline density. A DNA-translocating motor, powered by ATP hydrolysis, accomplishes this task, which would otherwise be energetically unfavorable. DNA-packagi...

متن کامل

The Q motif of a viral packaging motor governs its force generation and communicates ATP recognition to DNA interaction.

A key step in the assembly of many viruses is the packaging of DNA into preformed procapsids by an ATP-powered molecular motor. To shed light on the motor mechanism we used single-molecule optical tweezers measurements to study the effect of mutations in the large terminase subunit in bacteriophage lambda on packaging motor dynamics. A mutation, K84A, in the putative ATPase domain driving DNA t...

متن کامل

Structures of the phage Sf6 large terminase provide new insights into DNA translocation and cleavage.

Many DNA viruses use powerful molecular motors to cleave concatemeric viral DNA into genome-length units and package them into preformed procapsid powered by ATP hydrolysis. Here we report the structures of the DNA-packaging motor gp2 of bacteriophage Sf6, which reveal a unique clade of RecA-like ATPase domain and an RNase H-like nuclease domain tethered by a regulatory linker domain, exhibitin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 118  شماره 

صفحات  -

تاریخ انتشار 2004